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Abstract

The in~uence of the geometry of a thin intermediate zone on the stress distribution has been investigated
in the vicinity of a crack tip in a bimaterial structure[ Corresponding modelling boundary value problems
are reduced to functional!di}erence equations by the Mellin transform technique\ and later to singular
integral equations with _xed point singularities[ It has been observed that the order of the stress singularity
is essentially dependent on the model parameters[ Numerical results concerning the stress singularity
exponents and generalized stress intensity factors are presented[ Þ 0887 Elsevier Science Ltd[ All rights
reserved[

0[ Introduction

In this paper we shall discuss the problems of the stress singularities at the crack tip in the solids
with step!wise nonhomogeneities[ The usual\ traditional method of dealing with such problems
consists in _nding the solution for a bimaterial solid with ideal bonding between the interfacial
boundary\ i[e[ when it can be assumed that the respective stress tensor components\ as well as the
displacement vector components vary continuously across the interface[ In these cases the boundary
conditions along the interface are called {{ideal||[ It is known from the literature on the subject that
the solutions with the {{ideal|| bonding conditions have at least two disadvantages[

Beginning from the papers by Zak and Williams "0852#\ it is evident that for a crack perpendicular
to the interface the asymptotics of the displacements takes the form u ½ Kmrvmfm"u# for r : 9 where
the real number vm $"9\ 0# depends on the elastic parameters of the material\ the state of stresses
"m � 0\ 1\ 2# and the form of the boundary condition over the crack faces[ However when a crack
is no longer perpendicular to the bonding plane or in the case of an interfacial crack\ parameters
vm "m � 0\ 1#\ in general\ are complex numbers[ This fact results in unacceptable\ from the physical
point of view\ oscillatory stresses in the neighbourhood of the crack tip and overlapping crack
faces "Comninou\ 0868^ Rice\ 0877#[ It is interesting to note that even in the case when a crack is
perpendicular to the boundary of the {{ideal|| contact\ the stress oscillation at the vicinity of the
crack tip can also appear[ This may happen when the mixed boundary conditions of the type
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"su � −p\ ur � u# or "uu � u\ sru � −p# are given along the crack surfaces\ and at the same time
the material constants of elasticity mj and kj � 2−3nj "where mj are the shear moduli while nj

Poisson|s ratios\ respectively#\ satisfying the relationships] "m0−m9#"m0k9−m9k0# ³ 9 "compare Mis!
huris\ 0875#[

Though the use of the so!called {{kinked crack approach|| "see He and Hutchinson\ 0878a\ b#
makes it possible to avoid the _rst of the above mentioned disadvantages "the oscillation#\ never!
theless the model of the {{ideal|| contact bonding is not capable to take into account any e}ect of
the mechanical characteristics of the contact region on the distribution of stresses or displacement
_elds[ This is the second shortage of the {{ideal interface concept||[ Furthermore {{the kinked crack
approach|| leads to the certain type of {{non!uniqueness|| with regards to the crack extension
process[

On the other hand\ if we take into account the existence of a thin intermediate zone we shall be
able to consider the e}ect of the contacting regions[ As examples we can cite the papers by Atkinson
"0866#\ Erdogan et al[ "0880# and Mishuris "0874#[ If we assume that the intermediate elastic zone
is of constant thickness h� and its mechanical properties are such that their values change con!
tinuously from those of the _rst material to the values for the second material\ we shall obtain the
value of parameter vm equal to 9[4\ and the distribution of stresses at a crack tip resembles that
encountered for a homogeneous elastic solid[ However\ in the case when the thickness of the
intermediate zone is essentially smaller than a crack length l� and the characteristic dimension
D�\ stress intensity factor Km will assume either very small or very large values depending on the
ratios of the elastic parameters characterizing the materials "Atkinson and Javaherian\ 0879^
Erdogan et al[\ 0880#[ A similar situation arises in the case of the {{kinked crack approach|| when
the length of the kinked crack tends to zero[

In fact the surfaces of the two bonded materials as a rule are not identical[ There exist various
asperities and roughnesses of the bonded surface[ If the height of the asperities is much smaller
than the thickness of the intermediate zone then the fact that the surfaces of the bonded materials
are not smooth does not play any essential role[ However\ when the above parameters are
comparable in value\ the situation can be entirely di}erent[

The purpose of the paper is to investigate the behaviour of stress tensor and displacement vector
in the neighbourhood of a crack tip in the case when the crack terminates at a thin intermediate
zone for various kinds of geometry[ It is assumed that the characteristic thickness of the inter!
mediate zone satis_es the relations] h� ð l�\ h� ð D "see Fig[ 0#[

In order to discuss a su.ciently general case we assume that the thickness of the elastic
intermediate zone "inclusion# can be written down in the form]

h"x�# � h� = =x�:d�=a\ =x�= ¾ d�\ 9 ¾ a ³ �\ "0#

where x� denotes the distance from a crack tip to a point on the contact bonding surface of two
materials\ and d� ð D� denotes a certain constant which can be interpreted as a characteristic
linear dimension of asperities and roughnesses on the surfaces of the bonded materials[

Thus\ making use of the standard assumptions\ applicable for the problems of thin inclusions\
we obtain the following contact conditions along the mid surface G of the pertinent segment of the
intermediate zone]

ðsnŁ =G � 9\ "ðuŁ−t�sn# =G � 9\ "1#
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Fig[ 0[ Bimaterial solid with a crack[

where ðuŁ\ ðsnŁ denote the jumps of the displacement and stress vectors between two points of
material 0 and material 9 separated by the thin intermediate zone[ Besides the diagonal matrix t�
have the parameters determined from the formulae]

t�0 � h"x�#:m�xy\ t�1 � h"x�#:E�\ t�2 � h"x�#:m�yz\ "2#

where E� and m�xy\ m�yz denote Young|s modulus\ and the shear strain modulus of an anisotropic
inclusion[

Let us observe that the relations "1# and "2# have been obtained by Cherepanov "0868# in a little
bit di}erent context[ Similar contact conditions "at least for a � 9# appear frequently in the rocks
mechanics[ Then the coe.cients of matrix t� are determined from experiments[

Now\ we can norm all the quantities possessing the dimension of length by means of the
characteristic length d�[ In this way we arrive at a model problem of _nding the dimensionless
displacements in an in_nite bimaterial plane\ weakened by a semi!in_nite crack[ On the surface of
the bonding of two materials y"�y�:d�# � 9 the following bonding conditions have to be satis_ed]

ðsnŁ =y�9 � 9\ "ðuŁ−trasn# =y�9 � 9\ "3#

where the non!negative components of the diagonal matrix t are constant and can be determined
either experimentally\ or from the formulae resulting from "2#]

t0 �
h�

d�m�xy

\ t1 �
h�

d�E�
\ t2 �

h�
d�m�yz

[ "4#

The corresponding forms of the intermediate zone near the crack tip have been shown in Fig[ 1bÐ
e[ Let us note that an {{ideal contact|| can be obtained from "3#\ as a special case\ by assuming that
t � 9 "Fig[ 1a#[

Here\ in fact\ we have made use of the assumption that h� ð d� ð D�[ In the case when the
quantities h� and d� are of the same order of smallness\ then the surface of material contact G\ as
a rule is no longer a plane y � 9[

We con_ne our consideration to the simplest case\ i[e[ of the antiplane stress[ Cases a � 9 and
a � 0 have been already discussed in Mishuris "0886#[

In the second and third sections the problem is formulated and reduced to a functional!di}erence
equation[ In the next section\ the solution of the equation is found for any of the values of the
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Fig[ 1[ Di}erent geometry of the thin modelling interfacial zone near the crack tip[

parameters based on the results in the Appendix[ In the _fth section\ asymptotics of the dis!
placement _eld near the crack tip is obtained and the singularity exponent of stresses is calculated[
In the last two sections numerical results are presented and discussed[

1[ Problem formulation

Let us consider the modelling problem for a bimaterial plane with a semi!in_nity crack ter!
minating perpendicularly at the interface[ We shall seek for displacements u0"x\ y#\ u2

9 "r\ u# in the
domains V0\ V2

9 "see Fig[ 1a#]

V0 � ""x\ y#] −� ³ x ³ �\ 9 ³ y ³ �#\

V2
9 � ""r\ u#] 9 ³ r ³ �\ 2"u¦p:1# $"9\ p:1##\

which are harmonic functions in the corresponding domains and satisfy exterior boundary con!
ditions along the crack surfaces]

s2
uz =G2

9
0 m9

0
r

1

1u
u2

9 =G2
9

� −`"r#\ "5#

where G2
9 � ""r\ u#] 9 ³ r ³ �\ u � −p:129#[ We assume throughout the paper that the function

`"r# is su.ciently smooth and has a compact support ðfor example ` $ C�
9 "9\ �#Ł then singularities

of the solutions are connected with the interior properties of the problems[ Due to the symmetry
of the geometry and conditions "5#\ we can state that u−

9 "r\ u# � u¦
9 "r\ −u−p# and then the

following condition is satis_ed]

u0 =G0
� 9\ "6#

on the crack line ahead G0 � ""r\ u#] 9 ³ r ³ �\ u � p:1#[ Further on\ we omit the superscript {{¦||
in the symbol u¦

9 [
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Along the interior boundary G¦ � ""x\ y#] 9 ³ x ³ �\ y � 9# between half!plane V0 and wedge
V¦

9 the interfacial conditions hold true]

0u0−u9−m9tr
a−0 1

1u
u91 bG¦

� 9\

1

1y
"m0u0−m9u9# =G¦

� 9\ "7#

with certain known constants t\ a − 9[
We shall seek for regular solutions u0 $ C1"V0#\ u9 $ C1"V¦

9 # of problems "5#Ð"7# meeting the
conditions at the singular points]

09[ u0\u9 � 6
O"rq9#\ r : 9\

O"r−q�#\ r : �\
"8#

19[ 9u0\9u9 � 6
O"rg9−0#\ r : 9\

O"r−g�−0#\ r : �[
"09#

Here q9\ q� − 9\ g9\ g� × 9 "q9¦q� × 9# are some unknown constants\ which depend on the values
of m9\ m0\ t\ a and will be calculated from the solution of the problem[

Remark[ All variables x\ y\ r and the sought functions u9"x\ y#\ u0"x\ y# are dimensionless\ the
constants m9\ m0\ 0:t and the function `"r# have dimension ðN:m1Ł[ Consequently\ constants in the
main singular terms of stresses near the crack tip "generalized SIF# have the same dimension[

2[ Reduction to a system of functional equations

By applying the Mellin transform in the respective domains to Laplace equation\ we obtain

u½ j"s\ u# � g
�

9

uj"r\ u#rs−0 dr � Aj"s# cos"su#¦Bj"s# sin"su#\ j � 9\ 0[ "00#

From a priori estimates "8# and "09# of the solution\ and the properties of the Mellin transform\
it follows that functions Aj"s#\ Bj"s# are analytic in the strip −min"q9\ g9# ³ Rs ³ min"q�\ g�#[
Besides\ Aj"s# can have a double pole at point s � 9\ in general\ but functions Bj"s# can have only
a simple pole at zero[ If this occurs\ the value of the parameter q9 is equal to 9[ Nevertheless\
functions s1Aj"s#\ sBj"s# are analytic in the strip −g9 ³ Rs ³ g�[

Substituting "00# in "5#Ð"7#b we obtain a system of linear equations in the strip −g9 ³ Rs ³ g�]

s1 ðA0"s# cos"ps:1#¦B0"s# sin"ps:1#Ł � 9\

m9sðA9"s# sin"ps:1#¦B9"s# cos"ps:1#Ł � −½̀ "s¦0#\

m9sB9"s# � m0sB0"s#[ "01#

Besides\ the balance condition for the wedge V¦
9 can be additionally written in the form]
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m9 lim
s:9

sB9"s# � −½̀ "0#[ "02#

Consequently\ B9"s#\ B0"s# have a simple pole at point s � 9^ function A0"s# is analytic in the strip
−min "0\ g9# ³ Rs ³ min "0\ g�#\ at least\ but from "02# and the second eqn "01#\ it follows that
function A9"s# can have only a simple pole at point s � 9[

The remaining boundary condition "7#a can be written in the form]

A0"s#−A9"s#−m9t"s¦a−0#B9"s¦a−0# � 9[ "03#

This functional equation holds true in a strip depending on the value of a[ Namely\ in the case
where a � 0\ eqn "03# is satis_ed in the whole strip −g9 ³ Rs ³ g�\ and function A9"s# has no pole
at zero[ As a particular case\ the corresponding solution of the problem can be obtained from a
paper by Mishuris "0886#[ If a $ ð9\ 0#\ then we should seek for solution of eqn "03# in the strip
−g9¦0−a ³ Rs ³ g�[ It means that eqn "03# holds true in a certain strip of the complex argument
s with positive real part[ In the case a × 0\ eqn "03# is satis_ed in the strip −g9 ³ Rs ³ a−0¦g�

" for negative real part of the parameter s#[ Besides\ functions A9"s#\ B9"s¦a−0# have simple poles
at point s � 9[ It is evident that we should assume

g9¦a¦g� × 0[ "04#

Taking into account "02# we introduce new dimensionless symbol D"s#]

D"s# � sB0"s#\ D"9# � −m−0
0 ½̀ "0#\ "05#

and eqn "03# can be rewritten in terms of function D"s#]

0
s
D"s#D"s#¦

½̀ "s¦0#
m0s sin"ps:1#

� m0tD"s¦a−0#\ "06#

where

D"s# � m0:m9 ctg"ps:1#−tg"ps:1# �
1"cos ps−k#
"0¦k# sin ps

\ k �
m9−m0

m9¦m0

[

Let v be the zero of the positive real part of function D"s# nearest to the imaginary axis[ One can
easily see that v is real and v $"9\ 0#[ Let us note here that the value of v−0 is the stress singularity
exponent in the case of the {{ideal|| bimaterial interface "t � 9#[

3[ Solution of the problem

In the case where a $ ð9\ 0# eqn "06# is valid in the strip 9 ³ Rs ³ v\ at least[ Hence\ function
D"s# is analytic in the strip a−0 ³ Rs ³ v\ and

g9 � 0−a\ g� � v\ q9 � 9\ q� � v[ "07#

At points s � a−0 and s � v\ function D"s# has simple poles\ whence

a−
9 � lim

s:a−0
"s¦0−a#D"s# �

1
pm9m0t

"m0D?"9#¦½̀?"0##\
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b−
9 � lim

s:v
"s−v#D"s# �

vm9

p"m9¦m0# 6
½̀ "0¦v#

m9v sin"pv:1#
−m0tD"a−0¦v#7[ "08#

It is proved in the Appendix that functional eqn "06# has a unique solution\ which can be found
from the singular integral eqn "A4#\ by use of relations "A0# and "A1#[ Therefore\ constant D?"9#\
D"a−0¦v# in "08# are calculated by means of solution f"t# of the singular integral eqn "A4#]

D?"9# �
p

1"0−a#
f½"0−a#−

0
m0"0−a#

G?"0# ½̀ "0#\

D"a−0¦v# � G 0
v

0−a1 cos
pv

1"0−a# $
1"0−a#

m0p"a−0¦v#
½̀ "0#−f½"v#%[ "19#

Here G"s# denotes the gamma!function\ and −G?"0# � g is the Euler constant[
Now\ consider the case where a × 0[ By the reasoning similar to that above\ one can conclude

that eqn "06# holds true in the strip −v ³ Rs ³ 9[ Hence\ function D"s# is analytic in the strip
−v ³ Rs ³ a−0\ and it has simple poles at points s � −v and s � a−0]

g9 � v\ g� � a−0\ q9 � v\ q� � 9[ "10#

Besides\ b¦
9 � a−

9 ðsee "08#a\ "19#aŁ\ but the remaining constant is of the form]

a¦
9 � lim

s:−v
"s¦v#D"s# �

vm9

p"m9¦m0# 6m0tD"a−0−v#−
½̀ "0−v#

m9v sin"pv:1#7\

D"a−0−v# � G 0
v

a−01 cos
pv

1"a−0# $
1"0−a#

m0p"a−0−v#
½̀ "0#−f½"−v#%[ "11#

Let us remember that constants g9\ g�\ q9\ q� in a priori estimations "09# have been calculated
in "07# and "10#\ so that assumption "04# is justi_ed for both the cases 9 ³ a ³ 0 and a × 0[ Besides\
note that all constants obtained in this section "a¦

9 \ a−
9 \ b¦

9 \ b−
9 # are dimensionless[

4[ Analysis of the solutions

Now we investigate asymptotics of the displacements u9"r\ u#\ u0"r\ u# near the crack tip in the
respective domains V9\ V0[ Note that]

u0"r\ u# � −
0

1pi g
i�¦o

−i�¦o

sin"p:1−u#s
s cos"ps:1#

D"s#r−s ds\ u $"9\ p:1#\

u9"r\ u# � −
0

1pi g
i�¦o

−i�¦o

ð ½̀ "s¦0# cos us¦m0D"s# cos"p:1¦u#sŁ
r−s ds

sm9 sin"ps:1#
[ "12#

Taking into account the considerations at the beginning of the third section\ we take that o $"9\ v#
in case a $"9\ 0#\ while o $"−v\ 9# for a $"0\ �#[
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We consider the two cases separately[ When 9 ³ a ³ 0\ using relations "08# and de_ning the
angle f calculated against the crack line ahead as f � p:1−u\ we obtain]

u9"r\ f# � C9−
K "0#

III

m9"0−a#
r0−a tg

pa

1
cos"0−a#"p−f#¦O"rmin"0\1"0−a###\ r : 9\

u0"r\ f# �
K "0#

III

m0"0−a#
r0−a sin"0−a#f¦O"rmin"0\1"0−a###\ r : 9\ f $"9\ p:1#\

u"r\ f# � O"r−v#\ r : �\ f $"9\ p#\ "13#

where f $"p:1\ p# in the _rst relation^ the displacement discontinuity near crack tip is
C9 � −m0ta

−
9 \ but constant K "0#

III is of the form] K "0#
III � −m0a

−
9 ðsin"pa:1#Ł−0[

In the case for a × 0 we _nd that

u9"r\ f# �
K "1#

III

m0vX
m0

m9

rv cos v"p−f#¦O"rmin"1−v\v¦a−0##\ r : 9\ f $"p:1\ p#\

u0"r\ f# �
K "1#

III

m0v
rv sin vf¦O"rmin"1−v\v¦a−0##\ r : 9\ f $"9\ p:1#\

u"r\ f# � const¦O"r0−a#\ r : �\ f $"9\ p#\ "14#

where K "1#
III � −m0a

¦
9 ðcos"pv:1#Ł−0[ The second terms of asymptotics in these relations is obtained

from discussion of eqn "06#[
Let us note that generalized stress intensity factors K "0#

III \ K "1#
III are the constants in the main terms

of asymptotics of stresses near the crack tip and have dimension ðN:m1Ł[ They coincide with the
stress intensity factors "SIF# when the singularity exponent is equal to 9[4[ Taking this fact into
account\ further on we shall call K "0#

III \ K "1#
III as SIF also[

In Fig[ 2\ a graph of the main exponent of stress singularity for the crack terminating at the
bimaterial interface is presented with respect to the value of parameter a[ Besides\ a scheme
demonstrating the distribution of a number of singular terms in the stress asymptotics in the
neighbourhood of the crack tip is shown[

Fig[ 2[ Graph of the exponent of the main term of the stress asymptotics[ Scheme of distribution of a number of singular
terms in the asymptotics[
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*For a � 9\ an exponential singularity of stresses near the crack tip does not exist for any values
of the mechanical parameters m9\ m0\ t[ In this case\ stress singularity appears only in domain V0\
and it has a logarithmic character "see Mishuris\ 0886#[ Then there is displacement discontinuity
along the bimaterial interfacial contact near the crack tip[

*If a $"9\ 9[4Ł\ only one singular term in asymptotics of stresses in the neighbourhood of the crack
tip appears[ Corresponding exponent in the interval "−0\ 9# is g9−0 � −a\ and does not depend
on the values of the parameters m9\ m0\ t[

*For case a $"9[4\ 0#\ or more precisely for a $"a−
n \ a−

n¦0#\ "n � 1\ 2\ [ [ [#\ where a−
n � 0−0:n\ there

are exactly n singular terms in the asymptotics of stresses with the exponents g9−0 � −a\
g−

j −0 �" j¦0#"0−a#−0 $"−0\ 9#\ j � 0\ [ [ [ \ n−0 "see diagram in Fig[ 2#[ The number of n is
calculated by the relation n � ð"0−a#−0Ł\ where by ðxŁ we denote the integral part of the real
value x[ Let us note that n : � when a : 0[ Constants in the corresponding terms of poles of
the function D"s# are calculated as follows]

a−
j � lim

s:−g−
j

"s¦g−
j #D"s# �

D"g−
j #

m0tg
−
j

a−
j−0\ j � 0\ [ [ [ \ n[ "15#

In the last two cases "a $"9\ 0##\ the displacement discontinuity near the crack tip also appears[

*If a � 0 there is just one singular term of asymptotics with the exponent g9−0 $"−0\ v−0#\
depending essentially on the values of the mechanical parameters m9\ m0\ t[ Corresponding
equation to calculate this singularity and graphs of the exponent\ as a function of the parameters\
are presented in a paper by Mishuris "0886#[ For example\ when t : 9 we have g9−0 : v−0\
this coincides with the result for the {{ideal|| contact[ In this case "a � 0# and the next one "a × 0#
the displacement _eld is continuous near the crack tip[ ðHowever\ it is discontinuous on any
distance from the crack tip along the bimaterial contact in view of conditions "7#[Ł

*For case a $"0\ 1−v#\ or more precisely for a $"a¦
n¦0\ a¦

n #\ "n � 1\ [ [ [#\ where
a¦

n � 0¦"0−v#:"n¦0#\ there are precisely n singular terms in asymptotics of stresses with the
exponents g9−0 � v−0\ g¦

j −0 � j"a−0#¦v−0 $"−0\ 9#\ j � 0\ [ [ [ \ n−0 "see diagram in Fig[
2#[ As above n : � when a : 0\ and n � ð"0−v#:"a−0#¦0Ł[ The corresponding constants as
in "15# are calculated from the formulae]

a¦
j � lim

s:−g¦
j

"s¦g¦
j #D"s# �

m0tg
¦
j

D"g¦
j #

a¦
j−0\ j � 0\ [ [ [ \ n[ "16#

*Finally\ in case a $ ð1−v\ �#\ one singular term of the stress asymptotics appears[ The cor!
responding exponent is of the form g9−0 � v−0\ and does not depend on the remaining
parameters of the problem[

What is interesting to note is that there are two cases when the values of SIF K "0#
III \ K "1#

III in the
main terms of asymptotics "13#\ "14# can be calculated in a closed form[ Namely\ if a � 0:1 and
m0:m9 � 0\ then the corresponding integral eqn "A4# degenerates "the kernel of the integral operator
is equal to zero#\ and we obtain]

K "0#
III �

−1z1
ptm9 6m0p g

�

9

t−0:1h"t#G"t# dt−1G?"0# ½̀ "0#¦½̀?"0#7[ "17#
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In this case\ we have the usual square root stress singularity near the crack tip\ but the dependence
of K "0#

III on the parameter t has a nonlinear character[ ðAs it follows from "A4#\ the functions h"t#\
G"t# also depend on parameter t[Ł

The second case is when a � 0¦v\ but the other parameters m0:m9\ t can be of arbitrary values[
Then the exponent of the stress singularity is equal to v−0\ and the corresponding coe.cient
K "1#

III depends in a linear way on the parameter t\ and is calculated from the relation "11# taking
into account "05#]

K "1#
III �

m0vm9

p"m9¦m0# cos"pv:1# 6t ½̀ "0#¦
½̀ "0−v#

m9v sin"pv:1#7[ "18#

5[ Numerical results and discussion

Now we present numerical results concerning the stress intensity factors for loading
`"r# � pd"r−0#\ where constant p has dimension ðN:m1Ł "d"r−0# the Dirac delta applied on the
unit distance from the crack tip#[ Di}erent values of the remaining dimensionless mechanical
parameters of the problem m0:m9\ a\ t9 � m9t are considered[ Further on\ we shall consider both the
cases a $"9\ 9[4Ł and a $ ð1\ �# separately\ since they have their speci_c features "there is always
only one singular term of stresses near the crack tip#[ Numerical results for the cases a � 9 and
a � 0 are presented in a paper by Mishuris "0886#[

The case a $"9\ 9[4#

First of all we investigate the in~uence of normalized parameter t9 � tm9 on the coe.cients in
"13#[ Thus\ in Fig[ 3\ diagrams of the normalized SIF K "0#

III :p "Fig[ 3a# and the normalized jump of
displacement near crack tip C9m9:p "Fig[ 3b# are presented in a logarithmic scale as functions of t9

for di}erent values of ratio m0:m9 and for a � 9[0[ It is evident that the corresponding curves are
straight lines for all values of the parameter t9 under consideration[ Consequently\ we can conclude
that

Fig[ 3[ Graphs of the normalized SIF K "0#
III :p and the normalized jump of displacement C9m9:p ðsee "13#Ł in the logarithmic

scale as functions of the normalized parameter t9 � tm9 in the case a � 9[0 for di}erent values of ratio m0:m9\ and loading
`"r# � pd"r−0# ðN:m1Ł[
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Fig[ 4[ Graphs of the coe.cients of asymptotics "13# as functions of the exponent a $"9\ 9[4# in logarithmic scale for
di}erent magnitudes of the normed parameter t9 � tm9 and for two values of parameter m0:m9 � 9[93^ 14 ðthe cor!
responding curves are denoted by "0# and "1#\ respectivelyŁ[

C9 ½ tv�
9 \ K "0#

III ½ tv�−0
9 [ "29#

The value of v� calculated numerically is equal to v� � v¦a with an accuracy not exceeding 1)\
as it is to be expected[ Hence\ if t9 : 9\ then asymptotics "13# coincides with that for the {{ideal||
bimaterial contact "t9 � 9#[ Moreover\ relations "29# make it possible to calculate constants C9m9\
K "0#

III in "13# for all values of t9 using only a piece information of a single su.ciently small value of
t9[

In~uence of parameter a from interval "9\ 9[4# on the coe.cients of asymptotics "13# is illustrated
in Fig[ 4[ Two cases of the ratio of the shear moduli are presented[ By symbol "0#\ we denote the
respective curves when the crack terminates on a soft half!plane "m0:m9 � 0:14#\ "1# however\
corresponds to "m0:m9 � 14#[ As it follows from Fig[ 4a\ graphs for SIF K "0#

III increase when a : 9[
Constant K "0#

III tg"pa:1# presented by the _rst term of the asymptotics of function u9 does not
increase[ This fact coincides with the distribution of stresses near the crack tip arising in the limiting
case a � 9[

Finally\ in Fig[ 5\ we present the normalized coe.cients C9m9:p\ K "0#
III :p as functions of the shear

moduli ratio m0:m9 for di}erent values of t9 and a � 9[0[ Thus\ for large values of the ratio m0:m9

"the crack terminates on a stronger half!plane#\ magnitudes of SIF K "0#
III do not depend much on

parameter t9[ This fact coincides with the results from Fig[ 4a[
On the other hand it is not true for C9m9[ Namely\ the values of displacement discontinuity near

crack tip along the interface are almost equal for all values of the parameter t9 when m0:m9 : 9 "the
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Fig[ 5[ Graphs of the normalized coe.cients K "0#
III :p and C9m9:p as functions of ratio m0:m9 in logarithmic scale for

parameter a � 9[0 and di}erent values of parameter t9 � tm9[

Fig[ 6[ Graphs of the normalized coe.cients K "1#
III :"vp# and K "1#

III :K�III of eqn "14# as functions of parameter t9 � tm9 in
the case a � 1 and di}erent values of ratio m0:m9[

crack terminates on a soft half!plane#[ Analogous behaviour can be seen in Fig[ 4c[ Both the results
are to be expected[

The case a $"1−v\ �#

Let us remember that in this case the stress singularity exponent does not depend on all remaining
parameters and is equal to v−0 "see diagram in Fig[ 2#[ Consequently\ we can compare the
respective unique value of K "1#

III from "14# with the coe.cient

K�III �
1m0 ½̀ "0−v#

p"m9¦m0# sin pv
\ "20#

corresponding to the {{ideal|| contact condition "t9 � 9#[ Beside value K "1#
III :K�III\ we present also

diagrams of ratio K "1#
III :v arising while critical crack opening criteria "Dugdale\ 0859^ Wells\ 0850^

McClintock\ 0847#\ or the e}ective stresses criteria "Novozhylov\ 0858^ Seweryn\ 0883^ Seweryn
and Mroz\ 0884# are applied[

In Fig[ 6\ diagrams of parameters K "1#
III :"vp#\ K "1#

III :K�III are presented as functions of parameter
t9 for di}erent values of the shear moduli ratio m0:m9 and for a � 1[9[ When t9 × 9[94\ all curves
in Fig[ 6a become straight lines[ Consequently there is a linear dependence of K "1#

III on this parameter
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for such values of t9[ Let us remember that in the case a � 0¦v relation "18# for K "1#
III behaves

similarly for all values of t9[ The next conclusion which can be drawn in that parameter t9 has little
e}ect on the value of SIF for t9 ³ 9[0[ "The corresponding ratio K "1#

III :K�III is less than 0[0[#
This fact is more evident in Fig[ 7b\ where parameter K "1#

III :K�III is presented as a function of the
shear moduli ratio m0:m9\ for di}erent values of t9 and for a � 1[9[ On the other hand\ for m0:m9 :
9 SIF K "1#

III tends to zero\ and the stress singularity v−0 tends to minus one "v : 9#[ However\
the combined coe.cient K "1#

III dv:v arising within the frames of any of the fracture criteria mentioned
above does not lead to a paradoxical conclusion[ Although the parameter d ð 0 has di}erent
mechanical interpretation for each of the criterion\ the coe.cient K "1#

III dv:v decreases mon!
otonically as m0:m9 increases[

Now we investigate the in~uence of parameter a on SIF[ In Fig[ 8\ diagrams of K "1#
III :K�III act as

functions of parameter t for two values of the shear moduli ratio m0:m9 "m0:m9 � 49*Fig[ 8a^
m0:m9 � 0:49*Fig[ 8b# and various values of a[ In Fig[ 09\ the values of K "1#

III :K�III are presented as
functions of a for various magnitudes of t9 in the case of] m0:m9 � 14 in Fig[ 09a^ and m0:m9 � 0:14
in Fig[ 09b[ As it can be easily seen\ parameter a has the greatest in~uence on K "1#

III when the crack
terminates on a soft half!plane " for small values of the ratio m0:m9#[ Besides\ in this case\ K "1#

III

depends on t9 monotonically[ In the second case\ when the crack is situated in front of a stronger
material\ the behaviour of K "1#

III against parameter a is more complicated[

Fig[ 7[ Graphs of the normalized coe.cients K "1#
III :"vp# and K "1#

III :K�III of asymptotics "14# as functions of ratio m0:m9 in
the case a � 1 and di}erent values of ratio t0 � tm9[

Fig[ 8[ Graphs of the normalized coe.cient K "1#
III :K�III as functions of parameter t9 � tm9 for di}erent values of a for two

values of ratio m0:m9 � 49^ 9[91[
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Fig[ 09[ Graphs of the normalized coe.cient K "1#
III :K�III as functions of parameter a for di}erent values of t9 for two

values of ratio m0:m9 � 14^ 9[93[

It seems to be natural to expect that K "1#
III is closer to K�III as a : �[ However\ this is not the case

in our considerations[ This paradox can be explained easily[ Namely\ in the model under consider!
ation\ it has been assumed that condition "7#0 is satis_ed along the whole bimaterial contact[
However\ when r : � and a × 0 "Fig[ 1e#\ the relative thickness of the intermediate zone is not
small\ this is in contradiction to the assumption at the beginning of the paper[ In the result\ the
displacement does not vanish at in_nity ðsee "14#Ł[ To eliminate such an inconsistency\ it is necessary
to correct the respective interfacial condition as follows]

ðuŁ � f "r\ t\ a#sn\ f "r\ t\ a# � 6
tra\ 9 ³ r ¾ 0\

t\ 0 ³ r ³ �[

In this paper we shall not investigate the corresponding boundary value problem[
In regard to the cases where the parameter a $"9[4\ 1#\ the coe.cient KIII of the _rst asymptotic

term cannot be used in fracture mechanics analysis as a unique characteristic[ Coe.cients in the
next singular terms should be taken into account in the analysis[ Let us note in this connection
that there exists a recurrent relation between the sequential coe.cients KIII" j# and KIII" j¦0# which
follows from the respective relationships "15# and "16#[

6[ Conclusions

As it would be expected\ geometry of the thin intermediate zone between the di}erent materials
in~uences essentially the stress singularity near the crack tip terminating at the interface[

Whereas\ the exponent of the stress singularity for the {{ideal|| model of the bimaterial interface
"Fig[ 1a# is equal to v−0 and there is only one singular term of asymptotics of stress near the
crack tip\ situation varies for non!ideal contact conditions[ Graph of the main exponent of stress
singularity as a function of parameter a determining the geometry of the intermediate zone is
presented in Fig[ 2[ Let us remember that in the vicinity of point a � 0 "gap on the curve#
asymptotic expansion of stress contains a number n of singular terms\ and n tends to in_nity as
a : 9[ Consequently\ magnitudes of stresses and displacements some distance from the crack tip
change continuously against a[
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In~uence of all mechanical parameters of the problem on the value of SIF are illustrated and
discussed in the previous section and for the cases a � 9\ a � 0 in a paper by Mishuris "0886#[

Of course\ these theoretical results should be experimentally veri_ed[ Let us note in this con!
nection that for a practical intermediate zone the value of parameter t9 is very small\ as a rule[
Consequently\ on the distance from the crack tip r ½ t9\ the asymptotics of stress coincides
with that for the {{ideal|| bimaterial contact[ This fact should be taken into account when the
corresponding experimental results will be interpreted[

Although in most of the considered cases the stress singularity is not equal to −9[4\ in general\
fracture mechanics analysis can be done by the critical crack opening criteria or the e}ective stress
criteria mentioned above[ Corresponding investigation is not a goal of this paper[
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Appendix

Consider eqn "06# in the case a $"9\ 0#[ To solve the problem we introduce a new function F"s#
by the relation]

D"s# � G 00¦
s

0−a1 $F"s#−
1"0−a#
m0ps

½̀ "0#% sin
ps

1"0−a#
\ "A0#

which is analytic in a strip −b ³ Rs ³ min "v\ 1"0−a## with some value b × 0−a in view to "07#[
Note\ that D"9# � −m−0

0 ½̀ "0# as it should be in "05#[ Substitute "A0# in "06# we obtain the
corresponding functional equation]

F"s#¦m0t"0−a#D−0"s# ctg
ps

1"0−a#
F"s¦a−0# � G"s#\ "A1#

where the function

G"s# � −6m9D"s#G 00¦
s

0−a1 sin
ps

1"0−a#
sin

ps
1 7

−0

½̀ "s¦0#

¦
1"0−a#
pm0s

½̀ "0#¦
1t"0−a#1

pD"s#"s¦a−0#
ctg

ps
1"0−a#

½̀ "0#\

is analytic in the strip =Rs= ¾ min "v\ 1=0−a=#\ and tends to zero when =Is= : � so that
G"s# � O"s−0#[ It is more convenient for us to rewrite eqn "A0# in an equivalent form]
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F"s#¦m0t=0−a=D−0"s# ctg
ps

1=0−a=
F"s¦a−0# � G"s#[ "A2#

Let us note here\ that

D−0"s# ctg
ps

1=0−a=
�

m9

m9¦m0

¦C"s#\

C"s# �
m9

m9¦m0 6sin $ps 00−
0

1=0−a=1%¦k sin
ps

1=0−a=9 6"cos ps−k# sin
ps

1=0−a=9
−0

\

where C"s#¦m9:"m9¦m0# is an even analytic function in the strip =Rs= ¾ min "v\ 1=0−a=#\ which is
not equal to zero along the imaginary axis[ Besides\ there is an estimation] C"s# � O"exp"−p

min "0\ =0−a=−0#=Is=#\ when =Is= : �[
We shall _nd the solution of the functional eqn "A1# in the form of the Mellin transform]

F"s# � g
�

9

f "t#ts−a dt\ F"s¦a−0# � g
�

9

f "t#ts−0 dt\ "A3#

where −b ³ Rs ³ min "v\ 1=0−a=#[ Then function f"t# should belong to space f $ L0\d0d1"R¦#\
d0 × −b¦0−a\ d1 ³ min "0¦v−a\ 2"0−a##[ Here Lp\d0\d1"R¦# is Banach space of summable
functions of the norm "see Mishuris and Olesiak\ 0884#

>u>p\d0\d1 � 0g
�

9

=u"j# =prp
d0\d1

"j#
dj

j 1
0:p

\ rd0\d1
"j# � 6

jd0\ 9 ³ j ³ 0^

jd1\ 0 ³ j ³ �[

Substituting "A3# in "A1# and using the inverse Mellin transform\ we obtain the singular integral
equation]

f "t#¦m0t=0−a= g
�

9

C "t:j#h"t# f "j# dj:j � h"t#G"t#\ "A4#

where functions G"t#\ C"t#\ h"t# are de_ned as follows]

G"t#\C "t# �
0

1pi g
i�

−i�

G"s#\ C"s#t−s ds\ h"t# � $t0−a¦
m9m0t=0−a=

m9¦m0 %
−0

[

Here hG $ Lp\d0\d1"R¦# for any d0 × −min "v\ 1"0−a##\ d1 ³ min "v¦0−a\ 2"0−a##\ then basing
this on the results from a paper by Mishuris and Olesiak "0884# and the properties of functions C\
h\ we can formulate the following]

Theorem 0[ Let a $ ð9\ 0#\ p $ ð0\ �#\ −min "v\ 1"0−a## ³ d0 ³ d1 ³ min "0¦v−a\ 2"0−a##\ then
eqn "A4# has a unique solution in the space Lp\d0\d1"R¦#\ which can be calculated by projectional
methods "see Gohberg and Feldman\ 0860#[ Consequently\ all Mellin integrals in relation "19#
have a sense[

The case a × 0 is considered in a similar way[ All relations and the singular integral eqn "A4#
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still hold true\ and we should only take into account the strips of analyticity of the functions[
Namely\ function F"s# in "A0# is analytic in the strip −min "v\ 1"a−0## ³ Rs ³ b\ for some
b × a−0\ function G"s# is analytic in the strip =Rs= ¾ min "v\ 1"a−0##\ but the behaviour of
function h"t# at zero and in_nity will be di}erent in comparison with the case for 9 ³ a ³ 0[

Theorem 1[ Let a $"0\ �#\ p $ ð0\ �#\ −min "v¦a−0\ 2"a−0## ³ d0 ³ d1 ³ min "v\ 1"a−0##\ then
eqn "A4# has a unique solution in the space Lp\d0\d1"R¦#\ which can be calculated by projectional
methods[
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